\qquad
\qquad
\qquad

Lesson 1 Reteach

Rates

A ratio that compares two quantities with different kinds of units is called a rate. When a rate is simplified so that it has a denominator of 1 unit, it is called a unit rate.

Example 1

DRIVING Alita drove her car 78 miles and used 3 gallons of gas.
What is the car's gas mileage in miles per gallon?
Write the rate as a fraction. Then find an equivalent rate with a denominator of 1.
78 miles using 3 gallons $=\frac{78 \mathrm{mi}}{3 \mathrm{gal}} \quad$ Write the rate as a fraction.

$$
\begin{array}{ll}
=\frac{78 \mathrm{mi} \div 3}{3 \mathrm{gal} \div 3} & \text { Divide the numerator and the denominator by } 3 . \\
=\frac{26 \mathrm{mi}}{1 \mathrm{gal}} & \text { Simplify. }
\end{array}
$$

The car's gas mileage, or unit rate, is 26 miles per gallon.

Example 2

SHOPPING Joe has two different sizes of boxes of cereal from which to choose. The 12 -ounce box costs $\$ 2.54$, and the 18 -ounce box costs $\$ 3.50$. Which box costs less per ounce?

Find the unit price, or the cost per ounce, of each box. Divide the price by the number of ounces.
12 -ounce box $\quad \$ 2.54 \div 12$ ounces $\approx \$ 0.21$ per ounce
18 -ounce box $\quad \$ 3.50 \div 18$ ounces $\approx \$ 0.19$ per ounce
The 18 -ounce box costs less per ounce.

Exercises

Find each unit rate. Round to the nearest hundredth if necessary.

1. 18 people in 3 vans
2. $\$ 156$ for 3 books
3. 115 miles in 2 hours
4. 8 hits in 22 games
5. 65 miles in 2.7 gallons
6. 2,500 Calories in 24 hours

Choose the lower unit price.

7. $\$ 12.95$ for 3 pounds of nuts or $\$ 21.45$ for 5 pounds of nuts
8. A 32 -ounce bottle of apple juice for $\$ 2.50$ or a 48 -ounce bottle for $\$ 3.84$.
\qquad
\qquad
\qquad

Lesson 4 Reteach

Proportional and Nonproportional Relationships

Two related quantities are proportional if they have a constant ratio between them. If two related quantities do not have a constant ratio, then they are nonproportional.

Example 1

The cost of one $C D$ at a record store is $\$ 12$. Create a table to show the total cost for different numbers of CDs. Is the total cost proportional to the number of CDs purchased?

Number of CDs	1	2	3	4
Total Cost	$\$ 12$	$\$ 24$	$\$ 36$	$\$ 48$

$\frac{\text { Total Cost }}{\text { Number of CDs }}=\frac{12}{1}=\frac{24}{2}=\frac{36}{3}=\frac{48}{4}=\$ 12$ per CD \quad Divide the total cost for each by the number of
Since the ratios are the same, the total cost is proportional to the number of CDs purchased.

Example 2

The cost to rent a lane at a bowling alley is $\$ 9$ per hour plus $\$ 4$ for shoe rental. Create a table to show the total cost for each hour a bowling lane is rented if one person rents shoes. Is the total cost proportional to the number of hours rented?

Number of Hours	1	2	3	4
Total Cost	$\$ 13$	$\$ 22$	$\$ 31$	$\$ 40$

$\frac{\text { Total Cost }}{\text { Number of Hours }} \rightarrow \frac{13}{1}$ or $13 \quad \frac{22}{2}$ or $11 \quad \frac{31}{3}$ or $10.34 \quad \frac{40}{4}$ or $10 \quad$ Divide each cost by the
Since the ratios are not the same, the total cost is nonproportional to the number of hours rented with shoes.

Exercises

1. PICTURES A photo developer charges $\$ 0.25$ per photo developed. Is the total cost proportional to the number of photos developed?
2. SOCCER A soccer club has 15 players for every team, with the exception of two teams that have 16 players each. Is the number of players proportional to the number of teams?
\qquad
\qquad
\qquad

Lesson 5 Reteach

Graph Proportional Relationships

A way to determine whether two quantities are proportional is to graph them on a coordinate plane. If the graph is a straight line through the origin, then the two quantities are proportional.

Example 1

A racquetball player burns 7 Calories a minute. Determine whether the number of Calories burned is proportional to the number of minutes played by graphing on the coordinate plane.

Step 1 Make a table to find the number of Calories burned for $0,1,2,3$, and 4 minutes of playing racquetball.

Time (min)	0	1	2	3	4
Calories Burned	0	7	14	21	28

Step 2 Graph the ordered pairs on the coordinate plane. Then connect the ordered pairs.
Calories Burned Per Minute of Racquetball

The line passes through the origin and is a straight line. So, the number of Calories burned is proportional to the number of minutes of racquetball played.

Exercise

1. Shontell spends $\$ 7$ a month plus $\$ 0.10$ per minute.

Determine whether the cost per month is proportional to the number of minutes by graphing on the coordinate plane.

\qquad
\qquad
\qquad

Lesson 6 Reteach

Solve Proportional Relationships

A proportion is an equation that states that two ratios are equivalent. To determine whether a pair of ratios forms a proportion, use cross products. You can also use cross products to solve proportions.

Example 1

Determine whether the pair of ratios $\frac{20}{24}$ and $\frac{12}{18}$ form a proportion.
Find the cross products.

$$
\begin{aligned}
& 20 \\
& 24=12
\end{aligned} \rightarrow \quad 24 \cdot 12=288
$$

Since the cross products are not equal, the ratios do not form a proportion.

Example 2

Solve $\frac{12}{30}=\frac{k}{70}$.
$\frac{12}{30}=\frac{k}{70} \quad$ Write the equation.
$12 \cdot 70=30 \cdot k \quad$ Find the cross products.
$840=30 k \quad$ Multiply.
$\frac{840}{30}=\frac{30 k}{30} \quad$ Divide each side by 30.
$28=k$
Simplify.
The solution is 28 .

Exercises

Determine whether each pair of ratios forms a proportion.

1. $\frac{17}{10}, \frac{12}{5}$
2. $\frac{6}{9}, \frac{12}{18}$
3. $\frac{8}{12}, \frac{10}{15}$
4. $\frac{7}{15}, \frac{13}{32}$
5. $\frac{7}{9}, \frac{49}{63}$
6. $\frac{8}{24}, \frac{12}{28}$
7. $\frac{4}{7}, \frac{12}{71}$
8. $\frac{20}{35}, \frac{30}{45}$
9. $\frac{18}{24}, \frac{3}{4}$

Solve each proportion.
10. $\frac{x}{5}=\frac{15}{25}$
11. $\frac{3}{4}=\frac{12}{c}$
12. $\frac{6}{9}=\frac{10}{r}$
13. $\frac{16}{24}=\frac{z}{15}$
14. $\frac{5}{8}=\frac{s}{12}$
15. $\frac{14}{t}=\frac{10}{11}$
16. $\frac{w}{6}=\frac{2.8}{7}$
17. $\frac{5}{y}=\frac{7}{16.8}$
18. $\frac{x}{18}=\frac{7}{36}$

