Guided Practice

Write each expression using exponents. (Example 1)

- 2. $d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d$ **3.** $\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)^{3}$ 4. $4 \cdot m \cdot m \cdot m \cdot q \cdot q \cdot q \cdot 4m^3 q^3$ 5. (y-3)(y-3)(y-3) $(y-3)^3$ 6. (a + 1)(a + 1) $(a + 1)^2$
- 7. The longhorn beetle can have a body length of more than 2^4 centimeters. How many centimeters long is this? (Example 2) 16 cm
- 8. STEW Theo sends an E-mail to three friends. Each friend forwards the E-mail to three friends. Each of those friends forwards it to three friends, and so on. Write the number of E-mails sent during the fifth stage as a power. Then find the value of the power. (Example 2) 3⁵; 243

Evaluate each expression if a = 3, b = -4, and c = 3.5. (Example 3)

9. $a^3 + 2$ 29	10. $3(b-1)^2$ 75
11. $c^2 + b^2$ 28.25	12. $4c - 7 + b^3 - 57$

Independent Practice

Write each expression using exponents (Example 1)

Go online for Step-by-Step Solutions

eHelp

white cuch expression using exponents. (Example)	
11 • 11 • 11 • 11 11⁴	14. 3 • 3 • 3 • 3 • 3 3 ⁵
15. $(-8)(-8)(-8)(-8)(-8)$ (-8) (-8)	16. $(-14) \cdot (-14) \cdot (-14) (-14)^3$
17. $\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)^4$	18. (-1.5)(-1.5)(-1.5) (-1.5) ³
19. ab • ab • ab • ab (ab) ⁴ or a⁴b ⁴	20. 5 • p • p • p • q • q • q • 5 p ³ q ³
21. 3 • 7 • <i>m</i> • <i>m</i> • <i>n</i> • <i>n</i> • <i>n</i> • <i>n</i> 21<i>m</i>²<i>n</i>⁴	22. $8(c+4)(c+4) = 8(c+4)^2$
23. $(n-5)(n-5)(n-5)$ $(n-5)^3$	24. $(2x + 3y)(2x + 3y) (2x + 3y)^2$

- 25. STEM The longest chain of active volcanoes is in the South Pacific. This chain is more than $3 \cdot 10^4$ miles long and has approximately $3^5 \cdot 5$ volcanoes. (Example 2)
 - a. How long is the chain of volcanoes? 30,000 mi
 - b. How many volcanoes are there? 1215 volcanoes
- **26.** A water park has a wave pool that contains about $2^6 \cdot 4^3 \cdot 10^2$ gallons of water. How many gallons of water is this? (Example 2) 409,600 gal

Evaluate each expression if x = -2, y = 3, and z = 2.5. (Example 3)

27. <i>y</i> ⁴ 81	28. <i>z</i> ³ 15.625	29. 7x ² 28
30. <i>xy</i> ³ -54	31. $z^2 + x$ 4.25	32. <i>y</i> ⁴ + 9 90
33. 2 <i>y</i> + <i>z</i> ³ 21.625	34. $x^2 + 2y - 3$ 7	35. $y^2 - 3x + 8$ 23
36. 4(y + 1) ⁴ 1024	37. $3(2z+4)^2$ 243	38. $5(x^3 + 6) -10$

Find each product. E	xpress using positive expone	ents. (Examples 1—3)	
1. $2^4 \cdot 2^6$ 2 ¹⁰	2. 8 ⁵ • 8 8 ⁶	3. $5^{-6} \cdot 5^9 5^3$	4. $3^2 \cdot 3^{-5} \frac{1}{3^3}$
5. $x^{10} \cdot x^6 x^{16}$	6. $-w^2(5w^7) - 5w^9$	7. $m^8 \cdot m^{-10} \frac{1}{m^2}$	8. $y^{-4} \cdot y^{12} y^{8}$
Find each quotient.	Express using positive expon	ents. (Example 4)	
9. $\frac{4^5}{4^3}$ 4 ²	10. $7^9 \div 7$ 7 ⁸	11. $\frac{6^7}{6^{-5}}$ 6 ¹²	12. $9^{-2} \div 9^{6} \frac{1}{9^{8}}$
13. $\frac{r^8}{r^4}$ r ⁴	14. $b^{11} \div b^2 b^9$	15. $\frac{c^{-7}}{c^2} \frac{1}{c^9}$	16. $n^5 \div n^{-4}$ n ⁹

17. The Grand Canyon is approximately 2⁹ kilometers long. Mariner Valley is a canyon on Mars that is approximately 2¹² kilometers long. About how many times as long is the length of Mariner Valley than that of the Grand Canyon? (Example 5) 2³ or 8 times

Guided Practice

18. A snake is 2⁵ inches long. An earthworm is 2⁻¹ inch long. About how many times as long is the length of the snake than the length of the earthworm? (Example 5) 2⁶ or 64 times

Independent Prac	tice		Go online for Step-by-Step Solutions
Find each product. Expre	ess using positive exponer	Its. (Examples 1—3)	
19. 5 ⁶ • 5 ² 5 ⁸	20. $(-2)^3 \cdot (-2)$	² –2 ⁵	21. $a^7 \cdot a^2 a^9$
22. $(t^3)(t^3) t^6$	23. $4^{-5} \cdot 4^{6}$ 4 ¹	or 4	24. $6^5 \cdot 6^{-5}$ 6 ⁰ or 1
25. $c^2 \cdot c^{-3} \frac{1}{c}$	26. $(w^{-4})(w^6)$	/ ²	27. $(10x)(4x^{-7}) \frac{40}{x^6}$
28. 6 <i>p</i> ⁷ • 9 <i>p</i> ⁷ 54 <i>p</i> ¹⁴	29. $m^{-5} \cdot (-4m)$	⁶) —4m	30. $(-8s^3)(-3s^4)$ 24s⁷
Find each quotient. Express using positive exponents. (Example 4)			
31. $\frac{5^{10}}{5^2}$ 5 ⁸	32. $\frac{7^6}{7}$ 7 ⁵	33. $\frac{a^8}{a^7}$ a	34. $\frac{k^{12}}{k^9}$ k ³
35. $\frac{8^{-7}}{8^4} \frac{1}{8^{11}}$	36. $\frac{3^3}{3^{-1}}$ 3 ⁴	37. $\frac{b^4}{b^5} \frac{1}{b}$	38. $\frac{y^{15}}{y^{-2}} y^{17} \frac{1}{x^{10}} \text{ or } \frac{1}{(-x)^{10}}$
39. (−1.5) ⁸ ÷ (−1.5) ³ (−1.5) ⁵	40. 8 ¹⁵ ÷ 8 ⁻⁹ 8 ²⁴	41. $r^{20} \div r^6 r^{14}$	42. $(-n)^{-6} \div (-n)^4$

- 43. Sound intensity is measured in decibels. The decibel scale is based on powers of ten, as shown. (Example 5)
 - a. How many times as intense is a rock concert as a normal conversation? 10⁵ or 100,000 times
 - b. How many times as intense is a vacuum cleaner as a person whispering? 10⁶ or 1,000,000 times

Sound	Decibels	Intensity
rock concert	110	10 ¹¹
vacuum cleaner	80	10 ⁸
normal conversation	60	10 ⁶
whispering	20	10 ²

44. A large beetle can be 2^7 millimeters long. One of the smallest beetles can be 2^{-2} millimeter long. How many times as great is the length of the large beetle than the length of the small beetle? (Example 5) 2^9 or 512 times

Independent Practice

Go online for Step-by-Step Solutions

Express each number in standard form. (Example 1)

12. 6.89 × 10 ⁴ 68,900	13. 1.5 × 10 ⁻⁴ 0.00015
14. 2.3×10^{-5} 0.000023	15. 9.51 × 10 ⁻³ 0.00951
16. 3.062 × 10 ⁶ 3,062,000	17. 7.924 × 10 ² 792.4

- **18.** A dollar bill is approximately 1.09×10^{-2} centimeter thick. Write 1.09×10^{-2} in standard form. **0.0109**
- **19.** It is estimated that more than 1.71×10^{11} E-mails are sent each day around the world. Write 1.71×10^{11} in standard form. **171,000,000**

Express each number in scientific notation.	(Example 2)
20. 700,000 7 × 10 ⁵	21 32,000,000 3.2 × 10 ⁷
22. 0.045 4.5 \times 10 ⁻²	23. 0.000918 9.18 × 10⁻⁴
24. 1,000,000 1 × 10 ⁶	25. 0.006752 6.752 × 10 ⁻³

Estimate each value using scientific notation. (Example 3) 26–28. Sample answers are given.

26. 0.00000095 centimeter	27. 8.375 x 10 ⁻²³ pound	28. 56,300,001 miles
1×10^{-6} cm	8×10^{-23} lb	6 × 10 ⁷ mi

- **29.** The distance between Earth and the Moon is about 3.84×10^5 kilometers. Estimate this distance using scientific notation. (Example 3) **Sample answer:** 4×10^5 km
- **30.** The usual growth rate of human hair is 3.3×10^{-4} meter per day. Is it more appropriate to report the rate as 3.3×10^{-4} meter per day or 0.33 millimeter per day? Explain your reasoning. (Example 4)
- **31.** One ounce of a certain cheese has 219 milligrams of calcium. Is it more appropriate to include on the nutrition label that the cheese has 2.19×10^{-4} kilogram of calcium or 219 milligrams of calcium? (Example 4) **219 mg**

30. 0.33 millimeter per day; The length is very small, so choosing a smaller unit of measure is more meaningful.

Order each set of numbers from least to greatest. (Example 5)

32. 2.4 × 10², 2.45 × 10⁻², 2.45 × 10², 2.4 × 10⁻² **2.4** × 10⁻², **2.45** × 10⁻², **2.4** × 10², **2.4** × 10², **2.45** × 10²

- **33.** 2.81 × 10⁴, 2805, 2.08 × 10⁵, 3.2 × 10⁴, 3.024 × 10² **3.024** × 10², **2805**, **2.81** × 10⁴, **3.2** × 10⁴, **2.08** × 10⁵
- **34.** 5.9 × 10⁶, 5.9 × 10⁴, 5.01 × 10⁵, 5.1 × 10⁻³ **5.1** × 10⁻³, **5.9** × 10⁴, **5.01** × 10⁵, **5.9** × 10⁶
- **35.** 9,562,301, 9.05 × 10⁻⁶, 9.5 × 10⁶, 905,000 **9.05** × 10⁻⁶, 905,000, 9.5 × 10⁶, 9,562,301
- List the states in the table at the right from least to greatest production of maple syrup. (Example 5) New Hampshire, Wisconsin, New York, Maine, Vermont
- **B** 37. STEM A sheet of gold leaf is approximately 1.25×10^{-5} centimeter thick.
 - a. Write the value of the thickness as a decimal. 0.0000125 cm
 - **b.** Use the formula $V = \ell wh$ to find the volume in cubic meters of a sheet of gold that is 2 meters wide and 5 meters long. $1.25 \times 10^{-6} \text{ m}^3$

State	Amount of Syrup Produced (L)
Maine	1.10×10^{6}
New Hampshire	3.14×10^{5}
New York	$9.65 imes 10^5$
Vermont	$1.89 imes 10^{6}$
Wisconsin	3.79 × 10 ⁵

