CuidedPractice

Write each expression using exponents. (Example 1)

1. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 22^{6}$
2. $d \cdot d \cdot d \cdot d \cdot d \cdot d d^{6}$
3. $\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)^{3}$
4. $4 \cdot m \cdot m \cdot m \cdot q \cdot q \cdot q 4 m^{3} q^{3}$
5. $(y-3)(y-3)(y-3)(y-3)^{3}$
6. $(a+1)(a+1)(a+1)^{2}$
7. The longhorn beetle can have a body length of more than 2^{4} centimeters. How many centimeters long is this? (Example 2) 16 cm
8. Sill Theo sends an E-mail to three friends. Each friend forwards the E-mail to three friends. Each of those friends forwards it to three friends, and so on. Write the number of E -mails sent during the fifth stage as a power. Then find the value of the power. (Example 2) $\mathbf{3}^{\mathbf{5}} ; \mathbf{2 4 3}$

Evaluate each expression if $\boldsymbol{a}=\mathbf{3}, \boldsymbol{b}=\mathbf{4}$, and $\boldsymbol{c}=\mathbf{3 . 5}$. (Example 3)
9. $a^{3}+229$
10. $3(b-1)^{2} 75$
11. $c^{2}+b^{2} 28.25$
12. $4 c-7+b^{3}-57$

Tindependent Practice

Go online for Step-by-Step Solutions

Write each expression using exponents. (Example 1)
$1311 \cdot 11 \cdot 11 \cdot 11 \quad 11^{4}$
15. $(-8)(-8)(-8)(-8)(-8)(-8)(-8)^{6}$
17. $\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)\left(-\frac{1}{5}\right)^{4}$
19. $a b \cdot a b \cdot a b \cdot a b(a b)^{4}$ or $a^{4} b^{4}$
21. $3 \cdot 7 \cdot m \cdot m \cdot n \cdot n \cdot n \cdot n 21 m^{2} n^{4}$
23. $(n-5)(n-5)(n-5)(n-5)^{3}$
14. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 33^{5}$
16. $(-14) \cdot(-14) \cdot(-14)(-14)^{3}$
18. $(-1.5)(-1.5)(-1.5)(-1.5)^{3}$
20. $5 \cdot p \cdot p \cdot p \cdot q \cdot q \cdot q 5 p^{3} q^{3}$
22. $8(c+4)(c+4) 8(c+4)^{2}$
24. $(2 x+3 y)(2 x+3 y)(2 x+3 y)^{2}$
25. Sill Th The longest chain of active volcanoes is in the South Pacific. This chain is more than $3 \cdot 10^{4}$ miles long and has approximately $3^{5} \cdot 5$ volcanoes. (Example 2)
a. How long is the chain of volcanoes? $30,000 \mathrm{mi}$
b. How many volcanoes are there? 1215 volcanoes
26. A water park has a wave pool that contains about $2^{6} \cdot 4^{3} \cdot 10^{2}$ gallons of water. How many gallons of water is this? (Example 2) 409,600 gal

Evaluate each expression if $\boldsymbol{x}=\mathbf{- 2 , y}=\mathbf{3}$, and $\boldsymbol{z}=\mathbf{2 . 5}$. (Example 3)
27. $y^{4} 81$
28. $z^{3} 15.625$
29. $7 x^{2} 28$
30. $x y^{3}-54$
31. $z^{2}+x 4.25$
32. $y^{4}+990$
33. $2 y+z^{3} 21.625$
34. $x^{2}+2 y-37$
35. $y^{2}-3 x+823$
36. $4(y+1)^{4} 1024$
37. $3(2 z+4)^{2} 243$
38. $5\left(x^{3}+6\right)-10$

Guided Practice

Find each product. Express using positive exponents. (Examples 1-3)

1. $2^{4} \cdot 2^{6} 2^{10}$
2. $8^{5} \cdot 88^{6}$
3. $5^{-6} \cdot 5^{9} 5^{3}$
4. $3^{2} \cdot 3^{-5} \frac{1}{3^{3}}$
5. $x^{10} \cdot x^{6} x^{16}$
6. $-w^{2}\left(5 w^{7}\right)-5 w^{9}$
7. $m^{8} \cdot m^{-10} \frac{1}{m^{2}}$
8. $y^{-4} \cdot y^{12} y^{8}$

Find each quotient. Express using positive exponents. (Example 4)
9. $\frac{4^{5}}{4^{3}} 4^{2}$
10. $7^{9} \div 77^{8}$
11. $\frac{6^{7}}{6^{-5}} 6^{12}$
12. $9^{-2} \div 9^{6} \frac{1}{9^{8}}$
13. $\frac{r^{8}}{r^{4}} r^{4}$
14. $b^{11} \div b^{2} b^{9}$
15. $\frac{c^{-7}}{c^{2}} \frac{1}{c^{9}}$
16. $n^{5} \div n^{-4} n^{9}$
17. The Grand Canyon is approximately 2^{9} kilometers long. Mariner Valley is a canyon on Mars that is approximately 2^{12} kilometers long. About how many times as long is the length of Mariner Valley than that of the Grand Canyon? (Example5) $\mathbf{2}^{3}$ or 8 times
18. A snake is 2^{5} inches long. An earthworm is 2^{-1} inch long. About how many times as long is the length of the snake than the length of the earthworm? (Example 5) $\mathbf{2}^{6}$ or 64 times

Thdependent Practice

Go online for Step-by-Step Solutions
Find each product. Express using positive exponents. (Examples 1-3)
19. $5^{6} \cdot 5^{2} 5^{8}$
20. $(-2)^{3} \cdot(-2)^{2}-2^{5}$
23. $4^{-5} \cdot 4^{6} 4^{1}$ or 4
26. $\left(w^{-4}\right)\left(w^{6}\right) w^{2}$
29. $m^{-5} \cdot\left(-4 m^{6}\right)-4 m$
21. $a^{7} \cdot a^{2} a^{9}$
24. $6^{5} \cdot 6^{-5} 6^{0}$ or 1
27. $(10 x)\left(4 x^{-7}\right) \frac{40}{x^{6}}$
30. $\left(-8 s^{3}\right)\left(-3 s^{4}\right) 24 s^{7}$

Find each quotient. Express using positive exponents. (Example 4)
31. $\frac{5^{10}}{5^{2}} 5^{8}$
32. $\frac{7^{6}}{7} 7^{5}$
33. $\frac{a^{8}}{a^{7}} a$
34. $\frac{k^{12}}{k^{9}} \boldsymbol{k}^{3}$
35. $\frac{8^{-7}}{8^{4}} \frac{1}{8^{11}}$
36. $\frac{3^{3}}{3^{-1}} 3^{4}$
37. $\frac{b^{4}}{b^{5}} \frac{1}{b}$
39. $(-1.5)^{8} \div(-1.5)^{3}$
40. $8^{15} \div 8^{-9} 8^{24}$
41. $r^{20} \div r^{6} r^{14}$
38. $\frac{y^{15}}{y^{-2}} y^{17} \frac{1}{n^{10}}$ or $\frac{1}{(-n)^{10}}$
$(-1.5)^{5}$
43. Sound intensity is measured in decibels. The decibel scale is based on powers of ten, as shown. (Example 5)
a. How many times as intense is a rock concert as a normal conversation? 10^{5} or 100,000 times
b. How many times as intense is a vacuum cleaner as a person whispering? 10^{6} or $1,000,000$ times

Sound	Decibels	Intensity
rock concert	110	10^{11}
vacuum cleaner	80	10^{8}
normal conversation	60	10^{6}
whispering	20	10^{2}

44. A large beetle can be 2^{7} millimeters long. One of the smallest beetles can be 2^{-2} millimeter long. How many times as great is the length of the large beetle than the length of the small beetle? (Example 5) $\mathbf{2}^{9}$ or 512 times

TrdependenfPractice

Express each number in standard form. (Example 1)
12. $6.89 \times 10^{4} 68,900$
13. $1.5 \times 10^{-4} 0.00015$
14. $2.3 \times 10^{-5} 0.000023$
15. $9.51 \times 10^{-3} 0.00951$
16. $3.062 \times 10^{6} 3,062,000$
17. $7.924 \times 10^{2} 792.4$
18. A dollar bill is approximately 1.09×10^{-2} centimeter thick. Write 1.09×10^{-2} in standard form. 0.0109
19. It is estimated that more than $1.71 \times 10^{11} \mathrm{E}$-mails are sent each day around the world. Write 1.71×10^{11} in standard form. $171,000,000,000$

Express each number in scientific notation. (Example 2)

20. $700,0007 \times 10^{5}$
$2132,000,0003.2 \times 10^{7}$
21. $0.0454 .5 \times 10^{-2}$
22. $0.0009189 .18 \times 10^{-4}$
23. $1,000,0001 \times 10^{6}$
24. $0.0067526 .752 \times 10^{-3}$

Estimate each value using scientific notation. (Example 3) 26-28. Sample answers are given.
26. 0.00000095 centimeter $1 \times 10^{-6} \mathrm{~cm}$
27. 8.375×10^{-23} pound $8 \times 10^{-23} \mathrm{lb}$
28. $56,300,001$ miles
$6 \times 10^{7} \mathrm{mi}$
29. The distance between Earth and the Moon is about 3.84×10^{5} kilometers. Estimate this distance using scientific notation. (Example 3) Sample answer: $4 \times 10^{5} \mathrm{~km}$
30. The usual growth rate of human hair is 3.3×10^{-4} meter per day. Is it more appropriate to report the rate as 3.3×10^{-4} meter per day or 0.33 millimeter per day? Explain your reasoning. (Example 4)
31. One ounce of a certain cheese has 219 milligrams of calcium. Is it more appropriate to include on the nutrition label that the cheese has
2.19×10^{-4} kilogram of calcium or 219 milligrams of calcium? (Example 4) 219 mg
30. $\mathbf{0 . 3 3}$ millimeter per day; The length is very small, so choosing a smaller unit of measure is more meaningful.

Order each set of numbers from least to greatest. (Example 5)
32. $2.4 \times 10^{2}, 2.45 \times 10^{-2}, 2.45 \times 10^{2}, 2.4 \times 10^{-2} 2.4 \times 10^{-2}, 2.45 \times 10^{-2}, 2.4 \times 10^{2}, 2.45 \times 10^{2}$
33. $2.81 \times 10^{4}, 2805,2.08 \times 10^{5}, 3.2 \times 10^{4}, 3.024 \times 10^{2} 3.024 \times 10^{2}, 2805,2.81 \times 10^{4}, 3.2 \times 10^{4}, 2.08 \times 10^{5}$
34. $5.9 \times 10^{6}, 5.9 \times 10^{4}, 5.01 \times 10^{5}, 5.1 \times 10^{-3} 5.1 \times 10^{-3}, 5.9 \times 10^{4}, 5.01 \times 10^{5}, 5.9 \times 10^{6}$
35. $9,562,301,9.05 \times 10^{-6}, 9.5 \times 10^{6}, 905,0009.05 \times 10^{-6}, 905,000,9.5 \times 10^{6}, 9,562,301$
36. List the states in the table at the right from least to greatest production of maple syrup. (Example 5) New Hampshire, Wisconsin, New York, Maine, Vermont
37. STITM A sheet of gold leaf is approximately 1.25×10^{-5} centimeter thick.
a. Write the value of the thickness as a decimal. 0.0000125 cm
b. Use the formula $V=\ell w h$ to find the volume in cubic meters of a sheet of gold that is 2 meters wide and 5 meters long. $1.25 \times 10^{\mathbf{- 6}} \mathrm{m}^{\mathbf{3}}$

State	Amount of Syrup Produced (L)
Maine	1.10×10^{6}
New Hampshire	3.14×10^{5}
New York	9.65×10^{5}
Vermont	1.89×10^{6}
Wisconsin	3.79×10^{5}

