Essential Question

HOW can you show that two

objects are proportional?

Vocabulary

Common Core State Standards

NUMERATOR

ENOMINATOR

complex fraction

Content Standards 7.RP.1, 7.NS.3

Mathematical Practices

Complex Fractions and Unit Rates

What You'll Learn

List two headings you would use to make an outline of the lesson.

Real-World Link

Speed Skating Dana is skating laps to train for a speed skating competition. She can skate 1 lap in 40 seconds.

1. Write a ratio in simplest form comparing Dana's time to her number of laps.

> Dana's time (s) Number of Laps

3. Write the ratio of Dana's time from Exercise 2 to her number of laps.

How many laps will she skate?

4. How could you simplify the ratio you wrote in Exercise 3?

Work Zone
$$\frac{1}{4} : \frac{2}{4} = \frac{1}{4} \times \frac{1}{2}$$

$$\frac{3}{4} \div \frac{1}{4} = \frac{3}{1} \times \frac{4}{1} = \frac{12}{1} = 12$$

$$\frac{6}{1} = \frac{1}{3} = \frac{6}{1} \times \frac{3}{1} = \frac{18}{1} = \frac{18}{1}$$

Simplify a Complex Fraction

Fractions like $\frac{20}{1}$ are called complex fractions. Complex fractions are

fractions with a numerator, denominator, or both that are also fractions. Complex fractions are simplified when both the numerator and 1=1-2=0.5 denominator are integers.

Examples

Recall that a fraction can also be written as a division problem.

$$\frac{1}{4} = \frac{1}{4} \div 2$$
Write the complex fraction as a division problem.
$$= \frac{1}{4} \times \frac{1}{2}$$
Multiply by the reciprocal of 2, which is $\frac{1}{2}$.
$$= \frac{1}{8}$$
Simplify.

So,
$$\frac{\frac{1}{4}}{2}$$
 is equal to $\frac{1}{8}$.

Divide Fractions

To divide by a whole number, first write it as a fraction with a denominator of 1. Then multiply by the reciprocal.

So, $\frac{1}{2}$ can be written as $\frac{1}{4} \div \frac{2}{1}$

2. Simplify $\frac{1}{1}$.

Write the fraction as a division problem.

Write the complex fraction as a division problem.
$$= \frac{1}{2} \times \frac{1}{2}$$
Write the complex fraction as a division problem.
$$= \frac{1}{1} \times \frac{2}{1}$$
Multiply by the reciprocal of $\frac{1}{2}$, which is $\frac{2}{1}$.
$$= \frac{2}{1}$$
 or 2 Simplify.

So,
$$\frac{1}{\frac{1}{2}}$$
 is equal to 2.

Got It? Do these problems to find out.

(a)
$$\frac{2}{\frac{2}{3}} \leftarrow 2 : \frac{2}{3} : \frac{2}{3} : \frac{2}{3} : \frac{6}{2} : 3$$
 b. $\frac{6}{\frac{1}{3}} = \frac{6}{1} : \frac{1}{3}$

b.
$$\frac{6}{\frac{1}{3}}$$
 $\frac{6}{1}$ $\frac{1}{3}$

(c.)
$$\frac{2}{3}$$
 $\frac{2}{3}$ $\div \frac{1}{7}$ $\frac{2}{3}$ $\cdot \frac{7}{7}$ $\frac{14}{3}$ $\frac{4}{3}$ $\frac{2}{4}$

$$\frac{2}{\frac{3}{1}} = 2 \div \frac{3}{7} : 2 \times \frac{7}{3} = \frac{14}{3}$$

Find Unit Rates

When the fractions of a complex fractions represent different units, you can find the unit rate.

Examples

3. Josiah can jog $1\frac{1}{3}$ miles in $\frac{1}{4}$ hour. Find his average speed in miles per hour.

Write a rate that compares the number of miles to hours.

$$\frac{1\frac{1}{3} \text{ mi}}{\frac{1}{4} \text{ h}} = 1\frac{1}{3} \div \frac{1}{4}$$
Write the complex fraction as a division problem.
$$= \frac{4}{3} \div \frac{1}{4}$$
Write the mixed number as an improper fraction.
$$= \frac{4}{3} \times \frac{4}{1}$$
Multiply by the reciprocal of $\frac{1}{4}$, which is $\frac{4}{1}$.
$$= \frac{16}{3} \text{ or } 5\frac{1}{3}$$
Simplify.

So, Josiah jogs at an average speed of $5\frac{1}{3}$ miles per hour.

4. Tia is painting her house. She paints $34\frac{1}{2}$ square feet in $\frac{3}{4}$ hour.

At this rate, how many square feet can she paint each hour?

Write a ratio that compares the number of square feet to hours.

$$\frac{34\frac{1}{2} \text{ ft}^2}{\frac{3}{4} \text{ h}} = 34\frac{1}{2} \div \frac{3}{4}$$
Write the complex fraction as a division problem.
$$= \frac{69}{2} \div \frac{3}{4}$$
Write the mixed number as an improper fraction.
$$= \frac{69}{2} \times \frac{4}{3}$$
Multiply by the reciprocal of $\frac{3}{4}$, which is $\frac{4}{3}$.
$$= \frac{276}{6} \text{ or } 46$$
Simplify.

So, Tia can paint 46 square feet per hour.

Got It? Do these problems to find out.

- e. Mr. Ito is spreading mulch in his yard. He spreads $4\frac{2}{3}$ square yards in 2 hours. How many square yards can he mulch per hour?
- **f.** Aubrey can walk $4\frac{1}{2}$ miles in $1\frac{1}{2}$ hours. Find her average speed in miles per hour.

- e. _____
- £

Example

5. On Javier's soccer team, about $33\frac{1}{3}\%$ of the players have scored a goal. Write $33\frac{1}{3}\%$ as a fraction in simplest form.

$$33\frac{1}{3}\% = \frac{33\frac{1}{3}}{100}$$

$$= 33\frac{1}{3} \div 100$$

$$= \frac{100}{3} \div 100$$

$$= \frac{100}{3} \times \frac{1}{100}$$

$$= \frac{1}{2}$$

 $= \frac{3}{100}$ Definition of percent $= 33\frac{1}{3} \div 100$ Write the complex fraction as a division problem. $= \frac{100}{3} \div 100$ Write $33\frac{1}{3}$ as an improper fraction.

 $= \frac{100}{3} \times \frac{1}{100}$ $= \frac{1}{3}$ Multiply by the reciprocal of 100, which is $\frac{1}{100}$, $= \frac{1}{3}$ Simplify.

So, about $\frac{1}{3}$ of Javier's team has scored a goal.

Guided Practice

Simplify. (Examples 1 and 2)

1.
$$\frac{18}{\frac{3}{4}} =$$

3.
$$\frac{\frac{1}{3}}{\frac{1}{4}} =$$

4. Pep Club members are making spirit buttons. They make 490 spirit buttons in $3\frac{1}{2}$ hours. Find the number of buttons the Pep Club makes

per hour. (Examples 3 and 4)

5. A county sales tax is $6\frac{2}{3}$ %. Write the percent as a fraction in simplest form. (Example 5)

6. Q Building on the Essential Question What is a

complex fraction?

20 Chapter 1 Ratios and Proportional Reasoning

Independent Practice

Go online for Step-by-Step Solutions

Simplify. (Examples 1 and 2)

1.
$$\frac{1}{\frac{2}{3}} =$$

2.
$$\frac{2}{\frac{3}{11}} =$$

$$\frac{8}{9} =$$

4.
$$\frac{\frac{2}{5}}{9} =$$

5.
$$\frac{\frac{4}{5}}{10} =$$

6.
$$\frac{\frac{1}{4}}{\frac{7}{10}} =$$

- Mary is making pillows for her Life Skills class. She bought $2\frac{1}{2}$ yards of fabric. Her total cost was \$15. What was the cost per yard? (Examples 3 and 4)
- 8. Doug entered a canoe race. He rowed 3½ miles in ½ hour. What is his average speed in miles per hour? (Examples 3 and 4)
- 9. Monica reads $7\frac{1}{2}$ pages of a mystery book in 9 minutes. What is her average reading rate in pages per minute? (Examples 3 and 4)

Write each percent as a fraction in simplest form. (Example 5)

10.
$$56\frac{1}{4}\% =$$

11.
$$15\frac{3}{5}\% =$$

12.
$$13\frac{1}{3}\% =$$

13. A bank is offering home loans at an interest rate of $5\frac{1}{2}$ %. Write the percent as a fraction in simplest form. (Example 5)

Hummingbird Moth

H.O.T. Problems Higher Order Thinking

- 15. Construct an Argument Explain how complex fractions can be used to solve problems involving ratios.
- **16.** Reason Inductively Write three different complex fractions that simplify to $\frac{1}{4}$.
- 17. Persevere with Problems Use mental math to find the value of $\frac{15}{124} \cdot \frac{230}{30} \div \frac{230}{124}$.
- **18.** Solution Solution The value of a mutual fund increased by $3\frac{1}{8}$ %. Write $3\frac{1}{8}$ % as a fraction in simplest form. Justify your answer.
- 19. Persevere with Problems The distance around the tire of a motorized scooter is 21.98 inches. The tires make one revolution every $\frac{1}{10}$ second. Find the speed of the scooter in miles per hour. Round to the nearest tenth. (Hint: The speed of an object spinning in a circle is equal to the distance around the circle divided by the time it takes to complete one revolution.)
- 22 Chapter 1 Ratios and Proportional Reasoning

Extra Practice

Simplify.

20.
$$\frac{1}{\frac{1}{4}} = 4$$

$$\frac{1}{\frac{1}{4}} = 1 \div \frac{1}{4}$$

$$= \frac{1}{1} \times \frac{4}{1}$$

Homework Help
$$=\frac{1}{1} \times \frac{4}{1}$$

21.
$$\frac{12}{\frac{3}{5}}$$
 =

22.
$$\frac{\frac{9}{10}}{9}$$
 =

23.
$$\frac{\frac{1}{2}}{\frac{1}{4}} =$$

24.
$$\frac{\frac{1}{12}}{\frac{5}{6}} =$$

25.
$$\frac{\frac{5}{6}}{\frac{5}{9}} =$$

- **26.** Mrs. Frasier is making costumes for the school play. Each costume requires 0.75 yard of fabric. She bought 6 yards of fabric. How many costumes can Mrs. Frasier make?
- 27. A lawn company advertises that they can spread 7,500 square feet of grass seed in 2½ hours. Find the number of square feet of grass seed that can be spread per hour.

Write each percent as a fraction in simplest form.

28.
$$2\frac{2}{5}\% =$$

29.
$$7\frac{3}{4}\% =$$

30.
$$8\frac{1}{3}\% =$$

Explain how to write $1\frac{1}{4}\%$ as a fraction in simplest form.

Think art Sfor Smarter Balanced

- **32.** Debra bought $3\frac{1}{4}$ yards of fabric at a remnant sale for \$13. Determine if each of the following remnant deals have the same unit price as Debra's deal. Select yes or no.
 - **a.** $4\frac{2}{3}$ yards for \$16

 - **c.** $6\frac{1}{2}$ yards for \$26
- 33. The table shows the distances traveled by 4 cyclists. Sort the speeds of the riders, in miles per hour, from slowest to fastest.

	Rider	Speed (mph)
Slowest		
astest		

Bicycle Rides			
Rider	Distance	Time	
Elena	20 ¹ / ₂ mi	2 1 h	
Julio	12 ¹ / ₄ mi	$1\frac{1}{2}h$	
Kevin	20 ² / ₃ mi	1 ² / ₃ h	
Lorena	33 ¹ / ₄ mi	$2\frac{1}{3}$ h	

Which rider had the fastest rate of speed?

Common Core Spiral Review

Fill in each box with the equivalent customary measurement. 5.MD.1

- **34.** 2 feet = inches
- **35.** 5 tons = pounds
- **36.** 8 gallons =

Fill in each box with the equivalent metric measurement. 5.MD.1

37. 1 meter =

centimeters 38. 1 liter =

millileters

39. 1 kilogram =

grams

24 Need more practice? Download more Extra Practice at connectED.mcgraw-hill.com.