Essential Question

HOW can you show that two

objects are proportional?

Vocabulary

constant rate of change

Common Core

State Standards

Constant Rate of Cha

What You'll Learn

Scan the text on the following two pages. Write two facts you learned about constant rate of change.

Vocabulary Start-Up

A rate of change is a rate that describes how one quantity changes in relation to another. In a linear relationship, the rate of change between any two quantities is the same. A linear relationship has a constant rate of change.

Content Standards 7.RP.2, 7.RP.2b, 7.RP.2d

rate of change

Mathematical Practices

Real-World Link

A computer programmer charges customers per line of code written. Fill in the blanks with the amount of change between consecutive numbers.

	5	0 5	0 5	0	300
Lines of Code	50	100	150	200	500
Cost (\$)	1,000	2,000	3,000	4,000	10,000
	1,0	80 1	000	1,000	6,00

Label the diagram below with the terms change in lines, change in dollars, and constant rate of change.

Use a Table

You can use a table to find a constant rate of change.

Example

 The table shows the amount of money a booster club makes washing cars for a fundraiser. Use the information to find the constant rate of change in dollars per car.

	Cars V	Vashed
	Number	Money (\$)
-	5	40
20	10	80
5	15	120
-5(20	160

Unit Rate

A rate of change is usually expressed as a unit rate.

Find the unit rate to determine the constant rate of change.

So, the number of dollars earned increases by \$8 for every car washed.

Got It? Do these problems to find out.

a. The table shows the number of miles a plane traveled while in flight. Use the information to find the approximate constant rate of change in miles per minute.

	30		30 30	
Time (min)	30	60	90	120
Distance (mi)	290	580	870	1,160

b. The table shows the number of students that buses can transport. Use the table to find the constant rate of change in students per school bus.

Number of Buses	2	3	4	5
Number of Students	144	216	288	360

66 Chapter 1 Ratios and Proportional Reasoning

b.

Use a Graph

You can also use a graph to find a constant rate of change and to analyze points on the graph.

Examples

2. The graph represents the distance traveled while driving on a highway. Find the constant rate of change.

> To find the rate of change, pick any two points on the line, such as (0, 0) and (1, 60).

 $\frac{\text{change in miles}}{\text{change in miles}} = \frac{(60 - 0) \text{ miles}}{(60 - 0)}$ change in hours (1-0) hours $=\frac{60 \text{ miles}}{1 \text{ hour}}$

(1,60)

Explain what the points (0, 0) and (1, 60) represent.

The point (0, 0) represents traveling zero miles in zero hours. The point (1, 60) represents traveling 60 miles in 1 hour. Notice that this is the constant rate of change.

Got It? Do these problems to find out.

- c. Use the graph to find the constant rate of change in miles per hour while driving in the city.
- d. On the lines below, explain what the points (0, 0) and (1, 30) represent.

(0,0) -> NO MILES IN NO TIME (HOURS)

The ordered pair (2, 120) represents traveling 120 miles in 2 hours.

Page 3

Example

4. The table and graph below show the hourly charge to rent a bicycle at two different stores. Which store charges more per bicycle? Explain.

Pedals Rentals		
Time (hour)	Cost (\$)	
2	24	
3	36	
4	48	

The cost at Pedals Rentals increases by \$12 every hour. The cost at Super Cycles increases by \$8 every hour.

Number of Hours

So, Pedals Rentals charges more per hour to rent a bicycle.

6

Guided Practice

1. The table and graph below show the amount of money Mi-Ling and Daniel save each week. Who saves more each week? Explain. (Examples 1, 2, and 4)

Mi-Ling's Savings			
Time (weeks)	Savings (\$)		
2	\$30		
3	\$45		
4	\$60		

Daniel's Savings

2. Refer to the graph in Exercise 1. Explain what the points (0, 0) and (1, 10) represent. (Example 3)

3. Q Building on the Essential Question How can you find the unit rate on a graph that goes through

the origin?

68 Chapter 1 Ratios and Proportional Reasoning