Lesson 87

Solving Lhequalities

Interactive

 Study GuideSee pages 183-184 for:

- Getting Started
- Real-World Link
- Notes

Essential Question

How are equations and inequalities used to describe and solve multi-step problems?

Common Core State Standards

Content Standards

7.EE.4, 7.EE.4b

Mathematical Practices
1, 3, 4

What You'll Learn

- Solve inequalities by using the Addition and Subtraction Properties of Inequality.
- Solve inequalities by multiplying or dividing by a positive or negative number.

Real-World Link

Pets Did you know that 39 percent of U.S. households own at least one dog? The amount of food that you feed your dog should be based on the dog's weight. For example, an adult dog that weighs 10 pounds or less needs about $\frac{3}{4}$ cup of food per day. A dog that weighs more than 50 pounds needs 2 to 4 cups of food each day.

Key Concept $>$ Addition and Subtraction Properties

$$
\begin{aligned}
& \text { Words When you add or subtract the same number from each side of an } \\
& \text { inequality, the inequality remains true. } \\
& \text { Symbols For all numbers } a, b \text {, and } c \text {, } \\
& \text { 1. If } a<b \text {, then } a+c<b+c \text { and } a-c<b-c \text {. } \\
& \text { 2. If } a>b \text {, then } a+c>b+c \text { and } a-c>b-c \text {. } \\
& \text { Examples } \\
& 5<9 \\
& 11>6 \\
& 5+4<9+4 \quad 11-3>6-3 \\
& 9<13 \\
& 8>3
\end{aligned}
$$

The above properties are useful for solving inequalities. Note that these properties are also true for $a \leq b$ and $a \geq b$.

Example 1

Solve $x+5>12$. Check your solution.

$$
\begin{gathered}
x+5>12 \\
-5 \quad-5 \\
\hline x>7
\end{gathered}
$$

Check

$$
x+5>12 \quad \text { Write the inequality }
$$

$$
9+5>12 \quad \text { Replace } x \text { with any number greater than } 7 .
$$

$$
14>12 \checkmark \quad \text { The statement is true. }
$$

Gof If? Do these problems to find out.

1a. $y+10<3 y<-7$
1b. $x+7 \geq 10 x \geq 3$

Equations and Inequalities
In an equation, if $a=b$, then $b=a$. In an inequality, if $a<b$, then $b>a$.
Example: $7=2+5$ and $2+5=7$ $2+8>7$ but $7<2+8$

Positive Number

The statement $c>0$ means that c is a positive number.

When graphing inequalities, it is often easier to visualize the solution when the variable is on the left side of the inequality symbol.

Example 2

Solve $3 \leq b-1 \frac{1}{3}$. Graph the solution on a number line.

$$
\begin{array}{rlrl}
3 & \leq b-1 \frac{1}{3} & \text { Write the inequality. } \\
3+1 \frac{1}{3} & \leq b-1 \frac{1}{3}+1 \frac{1}{3} & & \text { Addition Property of Inequality } \\
4 \frac{1}{3} & \leq b \text { or } b \geq 4 \frac{1}{3} & & \text { Simplify. } \\
\text { The solution is } b \geq 4 \frac{1}{3} . & & \\
\text { Check } \quad 3 \leq b-\frac{1}{3} & & \text { Write the inequality. } \\
& \begin{aligned}
3 & \leq 4 \frac{1}{3}-1 \frac{1}{3} & & \text { Replace } b \text { with } 4 \frac{1}{3} . \\
3 & \leq 3 \checkmark & & \text { The statement is true. }
\end{aligned}
\end{array}
$$

Graph the solution.

Gof It? Do these problems to find out.

Solve each equation. Graph the solution on a number line.

2a. $3 \geq g+7 \quad g \leq-4$
2b. $b+\frac{5}{7}>2 b>1 \frac{2}{7}$

2a-2b. See Answer Appendix for number lines.

Key Concept Multiplication and Division Properties

Words When you multiply or divide each side of an inequality by the same positive number, the inequality remains true.
Symbols For all numbers a, b, and c, where $c>0$,

1. If $a<b$, then $a c<b c$ and $\frac{a}{c}<\frac{b}{c}$.
2. If $a>b$, then $a c>b c$ and $\frac{a}{c}>\frac{b}{c}$.

Examples

$$
\begin{aligned}
& -6<10 \quad 20>16 \\
& -6 \cdot 2<10 \cdot 2 \quad \frac{20}{4}>\frac{16}{4} \\
& -12<20 \quad 5>4
\end{aligned}
$$

These properties are also true for $a \leq b$ and $a \geq b$.
Some inequalities, like $4 x>8$, are solved by multiplication or division. You can multiply or divide each side of an inequality by a positive number and the inequality is still true.

Example 3

Words to Symbols Remember, at most translates to \leq, while at least translates to \geq.

Macy is making each of her 7 friends a bracelet. In addition to charms, she needs one package of wire for all of the bracelets. The wire is $\$ 6$. She does not want to spend more than $\$ 45$ on the bracelets. Find the maximum cost for each bracelet.
Since Macy wants to spend at most $\$ 45$, write and solve an inequality using the symbol \leq.

Number of friends times cost of each Words bracelet plus $\$ 6$ must be less than or equal to $\$ 45$.

Variable Let $c=$ the cost of each bracelet.

Inequality $\quad 7 c+\$ 6 \leq \$ 45$

$$
\begin{array}{ll}
7 c+6 \leq 45 & \text { Write the inequality. } \\
7 c+6-6 \leq 45-6 & \text { Subtraction Property of Inequality } \\
7 c \leq 39 & \text { Simplify. } \\
\frac{7 c}{7} \leq \frac{39}{7} & \text { Division Property of Inequality } \\
c \leq 5 \frac{4}{7} \text { or } 5 \overline{571428} & \text { Simplify. }
\end{array}
$$

Macy can spend no more than $\$ 5.57$ per bracelet.

Gof It? Do these problems to find out.

3a. $\frac{3}{4} n+\frac{1}{2} \geq 14$;
$n \geq 18$ lawns
3b. $28 p+10 \geq$ 115; $p \geq \$ 3.75$

Negative Number
The statement $c<0$ means that c is a negative number.

3a. Alfonzo works for a lawn service company. It takes Alfonzo $\frac{3}{4}$ hour to mow a lawn. If he works more than 8 hours, he gets a $\frac{1}{2}$ hour lunch. Write and solve an inequality to find the number of lawns he can mow if he works at least 14 hours.
3b. Keiko prepared 28 bags of granola to sell at a school fundraiser. She also received a $\$ 10$ donation. Write and solve an inequality to find the price she should charge for each bag of granola if she wants to raise at least $\$ 115$.

Key Concept > Multiplication and Division Properties

```
Words When you multiply or divide each side of an inequality by the same negative number, the inequality symbol must be reversed for the inequality to remain true.
Symbols For all numbers \(a, b\), and \(c\), where \(c<0\),
1. If \(a<b\), then \(a c>b c\) and \(\frac{a}{c}>\frac{b}{c}\).
2. If \(a>b\), then \(a c<b c\) and \(\frac{a}{c}<\frac{b}{c}\).
Examples
\(-4<5 \quad 18>-12\)
\(-4 \cdot(-3)>5 \cdot(-3) \quad \frac{18}{-3}<\frac{-12}{-3}\)
\(12>-15 \quad-6<4\)
```

Checking Solutions
For Example 4a, try a number that is less than -9 to show it is not a solution.

$$
-5 x<45
$$

$-5(-10)$ 之 45 $50 \nless 45$

To understand the properties shown on the previous page, consider what happens when each side of an inequality is multiplied or divided by a negative number.
Graph 2 and 4 on a number line.

Now, multiply each number by -1 .
Since 4 is to the right of $2,2<4$.

Notice that the numbers being compared switched positions as a result of being multiplied by a negative number. In other words, their order reversed. This suggests the properties shown on the previous page.

Example 4

Solve each inequality. Then graph the solution on a number line.
a. $-5 x<45$
$-5 x<45 \quad$ Write the inequality
b. $\frac{b}{-8}-2 \geq-8$
$\frac{b}{-8}-2 \geq-8$
Write the inequality.
$\frac{b}{-8}-2+2 \geq-8+2$
Addition Property
of Inequality
$\frac{b}{-8} \geq-6 \quad$ Simplify.
$(-8) \frac{b}{-8} \leq-6(-8)$
Multiplication Property of Inequality
$b \leq 48 \quad$ Simplify.

Gof If? Do these problems to find out.
4a-4b. See Answer Appendix for number lines.
4a. $-\frac{y}{4}<3 \quad y>-12$
4b. $7 \geq-2 f f \geq-3.5$

Euided Practice

Solve each inequality. Check your solutions. (Example 1)

1. $y+7 \leq 12 y \leq 5$
2. $b+20>-13 b>-33$
3. $-7<x+(-3) \quad x>-4$

Solve each inequality. Graph each solution on a number line.
See Answer Appendix for
4. $d-9.3 \geq 12.5 d \geq 21.8$
5. $3 \frac{1}{5}>f-\frac{4}{5} \quad f<4$
6. $g-22 \leq-40 \quad g \leq-18$
7. $-12 \geq-3 q-18 q \geq-2$
8. $-8 z \leq-24 z \geq 3$
9. $18>-\frac{2}{3} g \quad g>-27$
10. Isabel earns $\$ 50$ plus $\$ 2.50$ for each table she cleans. Write and solve an inequality to find how many tables she must clean to earn at least $\$ 120$. (Example 3) $2.5 t+50 \geq 120$; at least 28 tables

