

What You'll Learn

Scan the text on the following two pages. Write the definitions of direct variation and constant of proportionality.

- · direct variation
- · constant of proportionality

Essential Question

HOW can you show that two objects are proportional?

Vocabulary

direct variation constant of variation constant of proportionality

Common Core State Standards

Content Standards 7.RP.2, 7.RP.2a, 7.RP.2b

Mathematical Practices 1, 2, 3, 4

Real-World Link

Speed The distance y a car travels after x hours can be represented by y = 65x. The table and graph also represent the situation.

	Time (hours)	Distance (miles)	
	(2	130	>65
_	> 3	195	15
	7 4	260	76-

1. Fill in the blanks to find the constant ratio.

$$\frac{\text{distance traveled}}{\text{driving time}} = \frac{130}{2} = \frac{195}{3} = \frac{260}{4}$$

The constant ratio is 65 miles per hour.

- 2. The constant rate of change, or slope, of the line is $\frac{\text{change in miles}}{\text{change in time}}$, which is equal to $\frac{195 - 130}{3 - 2}$ or 65 miles per hour.
- 3. Write a sentence that compares the constant rate of change and the constant ratio.

Key Concept

Direct Variation

Work Zone

$$Y = 130$$
 $130 = 65$
 $X = 2$ $X = 65$

$$Y = 260 = 360 = 65$$

 $X = 4$
 $X = 65$

Direct Variation

function will always go

When a relationship varies

directly, the graph of the

through the origin, (0, 0). Also,

the unit rate v is located at

Words

A linear relationship is a Model direct variation when the ratio of y to x is a constant, k) We say y varies directly with x.

 $\frac{y}{x} = k$ or y = kx, Symbols where $k \neq 0$

When two variable quantities have a constant ratio, their relationship is called a direct variation. The constant ratio is called the constant of variation. The constant of variation is also known as the constant of proportionality.

In a direct variation equation, the constant rate of change, or slope, is assigned a special variable, k.

Example

8

1. The height of the water as a pool is being filled is shown in the TIME HEIGHT graph. Determine the rate in inches per minute.

$$\frac{\sqrt{}}{\sqrt{}} \frac{\text{height}}{\text{time}} \rightarrow \frac{2}{5} \text{ or } \frac{0.4}{1} \qquad \frac{4}{10} \text{ or } \frac{0.4}{1} \qquad \frac{6}{15} \text{ or } \frac{0.4}{1} \qquad \frac{8}{20} \text{ or } \frac{0.4}{1} \qquad \cancel{\cancel{K}} = 0.4$$

The pool fills at a rate of 0.4 inch every minute. DIRECT VARIATION

Got It? Do this problem to find out.

a. Two minutes after a diver enters the water, he has descended 52 feet. After 5 minutes, he has descended 130 feet. At what rate is the scuba diver descending?

82 Chapter 1 Ratios and Proportional Reasoning