## integers and Absolute Value

## Interactive Study Guide

See pages 29-30 for:

- Getting Started
- Vocabulary Start-Up
- Notes


## Essential Question

What happens when you add, subtract, multiply, and divide integers?

## Common Core <br> State Standards

Content Standards
Preparation for 7.NS.1, 7.NS.1a

Mathematical Practices
1, 2, 3, 4, 7


Vocabulary
negative number positive number integer opposites coordinate inequality absolute value

Math Symbols
< is less than
$>$ is greater than

## What You'll Learn

- Compare and order integers.
- Find the absolute value of an expression.


## Real-World Link

Geocaching Geocaching is an outdoor treasure hunting game. Some treasures, or geocaches, are located hundreds of feet above sea level. Others are hidden in lakes and can only be reached by snorkeling or scuba diving.


## Compare and Order Integers

A negative number is a number less than zero. A positive number is a number greater than zero. Negative numbers like -3 and positive numbers like +3 are members of the set of integers. An integer is any number from the set $\{\ldots,-3,-2$, $-1,0,1,2,3, \ldots\}$, where $\ldots$ means continues indefinitely.


Integers such as +3 and -3 are called opposites, because they are the same distance from zero on the number line.

## Example 1

Write an integer for each situation. Then identify its opposite and describe what it means.
a. $23^{\circ} \mathrm{F}$ below zero

Because it is below zero, the integer is -23 . Its opposite is +23 or 23 , which means $23^{\circ} \mathrm{F}$ above zero.
b. 11 inches more than normal

Because it is more than normal, the integer is +11 or 11 . Its opposite is -11 , which means 11 inches less than normal.

## Gof If? Do these problems to find out.

$-8 ;+8$ or 8 ; a gain of 8 yards
1a. a loss of 8 yards
+15 or 15; -15 ; a withdrawal of $\$ 15$
1b. a deposit of $\$ 15$

To graph an integer, locate the point named by the integer on a number line. The coordinate is the number that corresponds to the point on a number line.


Any mathematical sentence containing < or > is called an inequality. An inequality compares numbers or quantities. When two numbers are graphed on a number line, the number to the left is always less than the number to the right.

## Example 2

## Inequalities

The inequality symbol always points to the lesser number.

Use the integers graphed on the number line below.

a. Write two inequalities involving 1 and -2 .

Since 1 is to the right of $-2,1$ is greater than -2 . So, $1>-2$.
Since -2 is to the left of $1,-2$ is less than 1 . So, $-2<1$.
b. Replace the with $<,>$, or $=$ in $-4-6$ to make a true sentence.

Since -4 is to the right of $-6,-4$ is greater. So, $-4>-6$.

## Gof If? Do these problems to find out.

2a. Write two inequalities involving -7 and -3 . $-3>-7 ;-7<-3$
2b. Replace the with $<,>$, or $=$ in $-1 \bigcirc 2$ to make a true sentence. $<$

## Example 3



Bethany and her friends played a question-and-answer video game. Their scores at the end of the game were $1,-5,0,-1,2$, and 4 . Order the scores from least to greatest.
Graph each integer on a number line.


Write the numbers as they appear from left to right. The scores $-5,-1,0,1,2$, and 4 are in order from least to greatest.

## Gof If? Do this problem to find out.

3. The recorded highs in degrees Celsius at Niagara Falls from February 21 to 28 of a recent year are $4,2,3,-6,-5,-1,0$, and 1 . Order the temperatures from greatest to least. $4,3,2,1,0,-1,-5,-6$

## Key Concept Absolute Value

Words
The absolute value of a number is the distance the number is from zero on the number line. The absolute value of a number is always greater than or equal to zero.

Example $\quad|6|$ and $|-6|$


Symbols

$$
|6|=6
$$

The absolute value of 6 is 6 .

$$
|-6|=6
$$

The absolute value of -6 is 6 .

Notice on the number line that -6 and 6 are each 6 units from 0 , even though they are on opposite sides of 0 . The absolute value of a number is the distance the number is from zero on a number line. So, -6 and 6 have the same absolute value.

## Example 4



## Evaluate each expression.

a. $|-4|$

b. $\begin{array}{rlrl}|-8|-|5| & & \text { The absolute value of }-8 \text { is } 8 . \\ |-8|-|5| & =8-5 & & \text { The absolute value of } 5 \text { is } 5 . \\ & =3 & & \text { Simplify. }\end{array}$

Gof If? Do these problems to find out.
4a. $|-3| 3$
4b. $|-4|-|3| 1$

You can use absolute value notation with algebraic expressions since variables represent numbers.

## Example 5

Evaluate $\mathbf{6 + | x |}$ if $\boldsymbol{x}=\mathbf{- 2}$.

$$
\begin{aligned}
6+|x| & =6+\mid-\mathbf{2 |} & & \text { Replace } x \text { with }-2 . \\
& =6+2 & & \text { The absolute value of }-2 \text { is } 2 . \\
& =8 & & \text { Simplify. }
\end{aligned}
$$

Gof If? Do these problems to find out.
5a. Evaluate $|y|+8$ if $y=-7.15 \quad$ 5b. Evaluate $9-5|z|$ if $z=3 .-6$

## GuidedPractice

Write an integer for each situation. Identify its opposite and describe its meaning. (Example 1)

1. a bank withdrawal of $\$ 500$ 2. a gain of 4 pounds +4 or $4 ;-4$; a loss of 4 pounds $-500 ;+500$ or $500 ;$ a deposit of $\$ 500$
Write two inequalities using the number pairs. Use the symbols $\langle$ or $\rangle$. (Example 2)
2. 2 and -5
$2>-5 ;-5<2$
3. -4 and -8
$-4>-8 ;-8<-4$
4. -1 and 1 1>-1; $1<1$

Replace each $\bullet$ with $<,>$, or $=$ to make a true sentence. (Example 2)
6. $-9 \bullet-16>$
7. -7 - $7<$
8. $-6 \bigcirc 0<$
9. Order the state temperatures from least to greatest. (Example 3)

| State | AL | AK | CA | FL | HI | ME | NJ | OH | TX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature | -27 | -80 | -45 | -2 | 12 | -48 | -34 | -39 | -23 |

Evaluate each expression. (Example 4)
10. |-12| 12
11. $|-14|+|3| 17$
12. $|18|-|-5| 13$

Evaluate each expression if $\boldsymbol{x}=\mathbf{7}$ and $\boldsymbol{y}=\mathbf{- 6}$. (Example 5)
13. $15-|y| 9$
14. $|y|+x 13$
15. $3|y| 18$

