

Lesson 1-4

Properties of Numbers

ISG | <dInteractive Study Guide

See pages 11-12 for:

- Getting Started
- · Real-World Link
- Notes

Essential Question

How can you use numbers and symbols to represent mathematical ideas?

What You'll Learn

- · Identify and use properties of addition and multiplication.
- Use properties to simplify algebraic expressions.

Real-World Link

Crafts Duct tape has been used to create everything from flip-flops and prom dresses to wallets and homemade flotation devices. Algebraic properties can be used to find the amount of duct tape needed to make an item.

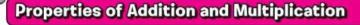
CCSS Common Core State Standards

Content Standards 7.EE.1, 7.EE.2

Mathematical **Practices** 1, 3, 4, 7

Vocabulary

properties Commutative Property **Associative Property** counterexample simplify deductive reasoning



In algebra, properties are statements that are true for any numbers. For example, the expressions 30 + 10 and 10 + 30 have the same value, 40. This illustrates the Commutative Property of Addition. Likewise, 30 • 10 and 10 • 30 have the same value, 300. This illustrates the Commutative Property of Multiplication.

Key Concept

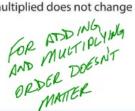
Commutative Properties

The order in which numbers are added or multiplied does not change Words the sum or product.

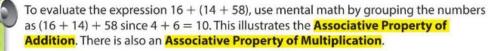
Symbols For any numbers a and b, a + b = b + a. For any numbers a and b, $a \cdot b = b \cdot a$.

Examples 6+9=9+6 $4 \cdot 7 = 7 \cdot 4$

15 = 1528 = 28



(52+16)+84 52+(16+84)



Key Concept Associative Properties

Words The way in which numbers are grouped when added or multiplied does not change the sum or product.

G ROUPING For any numbers a, b, and c, (a + b) + c = a + (b + c). Symbols any numbers a, b, and c, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Examples (3+6)+1=3+(6+1) $(5 \cdot 9) \cdot 2 = 5 \cdot (9 \cdot 2)$ $45 \cdot 2 = 5 \cdot 18$ 9+1=3+790 = 9010 = 10

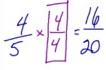
In addition to the Commutative and Associative Properties, the Identity and Zero Properties are also true for any numbers.

Identity

The word identity means sameness of essential character. The additive identity, 0, and multiplicative identity, 1, allow the original number to remain the same.

Key Concept Number Properties

may comoup.	Transcription of the period		
Property	Words	Symbols	Examples
Additive Identity	When 0 is added to any number, the sum is the number.	For any number a , $a + 0 = 0 + a = a$	5 + 0 = 5 0 + 5 = 5
Multiplicative Identity	When any number is multiplied by 1, the product is the number.	For any number a , $a \cdot 1 = 1 \cdot a = a$.	$8 \cdot 1 = 8$ $1 \cdot 8 = 8$
Multiplicative Property of Zero	When any number is multiplied by 0, the product is 0.	For any number a , $a \cdot 0 = 0 \cdot a = 0$	$3 \cdot 0 = 0$ $0 \cdot 3 = 0$



Counterexample

You can disprove a statement by

finding only one counterexample.

Do these properties apply to subtraction or division? One way to find out is to look for a counterexample. A counterexample is an example that shows a statement is not true.

5-4=1

Example 1

Is division of whole numbers associative? If not, give a counterexample.

The Associative Property of Multiplication states $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. To determine whether the Associative Property applies to division, check $(a \div b) \div c \stackrel{?}{=} a \div (b \div c)$.

$$(27 \div 9) \div 3 \stackrel{?}{=} 27 \div (9 \div 3)$$

Pick values for a, b, and c.

$$(3) \div 3 \stackrel{?}{=} 27 \div (3)$$

Simplify.

$$1 \neq 9$$

Simplify.

We found a counterexample. So, division of whole numbers is not associative.

Got It? Do this problem to find out.

1. Is subtraction of decimals associative? If not, give a counterexample.

Example 2

Name the property shown by each statement.

a.
$$4 + (a + 3) = (a + 3) + 4$$

The order of the numbers and variables changed. This is the Commutative Property of Addition.

b.
$$1 \cdot (3c) = 3c$$

The expression was multiplied by 1 and remained the same. This is the Multiplicative Identity Property.

Got It? Do these problems to find out.

2a.
$$d + 0 = d$$

2b.
$$8 \cdot 1 = 8$$

2c.
$$14 + (9 + 10) = (14 + 9) + 10$$

2d.
$$5 \times 7 \times 2 = 7 \times 2 \times 5$$

OPHGINAL RESIPPOCALS

$$\frac{15}{3} = 5$$
 $\frac{3}{15} = \frac{1}{5}$
 $\frac{1}{2} = \frac{1}{4} = \frac{1}{3} \cdot 4 = \frac{4}{3} = 2$
 $\frac{8}{16} = \frac{1}{2}$
 $\frac{8}{16} = \frac{1}{2}$