Lesson 4-4

Scientifio Notation

Essential

 Question Why is it useful to write numbers in different ways?\qquad

Common Core

 State Standards Content Standard 8.EE.1, 8.EE.3, 8.EE. 4
Mathematical

 Practices1, 3, 4, 7Vocabulary standard form scientific notation

What You'll Learn

- Express numbers in standard form and in scientific notation.
- Compare and order numbers written in scientific notation.

Real-World Link
Space Earth is the third planet from the Sun in our solar system. Because Earth's rotation about the Sun is not circular, the maximum distance between Earth and the Sun is about 95 million miles and the minimum distance is about 91 million miles.

Key Concept - Scientific Notation

Words	A number is expressed in scientific notation when it is written as the product of a factor and a power of 10 . The factor must be greater than or equal to 1 and less than 10.
Symbols	$a \times 10^{n}$, where $1 \leq a<10$ and n is an integer. Examples $3,500,000=3.5 \times 10^{6}$$\quad 0.00004=4 \times 10^{-5}$

Numbers that do not contain exponents are written in standard form. However, when you deal with very large numbers like 12,760,000 or very small numbers like 0.00001276 , it can be difficult to keep track of the place value. A number that is expressed as a product of a factor and a power of 10 is written in scientific notation.
When a number is expressed in scientific notation the exponent tells you how many places to move the decimal point.

Example 1

Express each number in standard form.

a. 2×10^{3}
$2 \times 10^{3}=2000$
Move the decimal point 3 places to the right.
b. 6.8×10^{5}
$6.8 \times 10^{5}=680,000$
Move the decimal point 5 places to the right.
c. 3.25×10^{-4} $3.25 \times 10^{-4}=0.000325$

2 Teach the Concept

Objectives write, compare, and order numbers in scientific notation

Building on the Essential Question

At the end of the lesson, students should be able to answer "Why is the conclusion that 7.8×10^{3} is greater than 6.5×10^{2} because $7.8>6.5$ incorrect?"

Example 1

What's the Math? write numbers in standard form

- Given a number expressed in scientific notation, what does a positive exponent tell you? It tells you how many places to move the decimal point to the right when you write the number in standard form.
- Given a number expressed in scientific notation, what does a negative exponent tell you? It tells you how many places to move the decimal point to the left when you write the number in standard form.

Need Another Example?

Express each number in standard form.
a. $3 \times 10^{5} 300,000$
b. $4.395 \times 10^{4} 43,950$
c. $6.79 \times 10^{-6} 0.00000679$

Gof It? Do these problems to find out.

Example 2

What's the Math? write numbers in scientific notation

- When you express a number in scientific notation, how do you determine the value of the exponent? Count the number of places to the right of the leftmost digit if the number is greater than 1 , and from the right of the decimal point to the first nonzero digit, if the number is less than 1.

Need Another Example?

Express each number in scientific notation.
a. $800,0008 \times 10^{5}$
b. $0.01191 .19 \times 10^{-2}$

Example 3

What's the Math? estimate numbers in scientific notation

- What is the first step in estimating with scientific notation? Round the number in standard form to the greatest place value.

Need Another Example?

The population of Montana is 998,199. Write an estimation in scientific notation for the population. Sample answer: 1×10^{6}

Example 4

What's the Math? choose units of appropriate size

- If you walked 1 mile, would you say that you walked for about 20 minutes or about 1200 seconds? 20 min

Need Another Example?

If you could ride your bike 200 meters per second, it would take about 1.92×10^{6} seconds to ride to the moon. Is it more appropriate to report this time as about 1.92×10^{6} seconds or about 22.2 days? 22.2 days; The number of meters to the moon is very large, so the larger unit is more appropriate.

When expressing a number in scientific notation, the sign of the exponent can be determined by evaluating the number in standard form. If a number in standard form is greater than or equal to 1 , then the exponent is positive. If a number is between 0 and 1 , then the exponent is negative.

Example 2

Express each number in scientific notation.

a. $4,000,000$
$4,000,000=4 \times 10^{6} \quad$ The decimal point moves 6 places.
The exponent is positive.
b. 0.072
$0.072=7.2 \times 10^{-2} \quad$ The decimal point moves 2 places.
The exponent is negative.
Gof If? Do these problems to find out.
2a. 9009×10^{2}
2b. $18,900 \quad 1.89 \times 10^{4} \quad$ 2c. $0.000064 \quad 6.4 \times 10^{-5}$

One way to estimate a very large or a very small number is to express it in the form of a single digit times an integer power of 10 . For example, the population of the United States in 2010 was $308,745,538$. The number 3×10^{8} is an estimate of that number.

Example 3

The population of Kansas is 2,853,118 people. Write an estimation in scientific notation for the population.
$2,853,118 \approx 3,000,000 \quad$ Estimate
$3,000,000=3 \times 10^{6} \quad$ Write in scientific notation.
The population of Kansas is about 3×10^{6} people.

Gof If? Do these problems to find out.

Estimate each value using scientific notation. 3a-3c. Sample answers are given.
3a. $3,612,500 \mathrm{~cm}$
3b. 0.000000251 ft $3 \times 10^{-7} \mathrm{ft}$

$$
\text { 3c. } 4.215 \times 10^{-3} \mathrm{~kg}
$$

$4 \times 10^{6} \mathrm{~cm}$
$4 \times 10^{-3} \mathrm{~kg}$

Example 4

Sill 17 The space shuttle traveled at about 8 kilometers per second. At this rate, the shuttle would take about 4.5×10^{4} seconds to fly to the moon. Is it more appropriate for a newspaper to report this time as about 4.5×10^{4} seconds or about $\mathbf{1 2 . 5}$ hours? Explain your reasoning.
The measure 12.5 hours is more appropriate. The number 4.5×10^{4} seconds is very large, so choosing the larger unit of measure is more meaningful.

Gof If? Do this problem to find out.

4. A dime is about 5.875×10^{-3} foot in diameter. Is it more appropriate to report that the diameter of a dime is 5.875×10^{-3} foot or 7.05×10^{-1} inch? Explain your reasoning.

Compare and Order Numbers

To compare and order numbers in scientific notation, first compare the exponents. With positive numbers, the number with a greater exponent is greater. If the exponents are the same, compare the factors.

Example 5

Power of 10 When writing a number in scientific notation the power of 10 is determined by the direction and number of places you move the decimal point.

STIM The table shows different geologic time periods. Order the time periods from oldest to youngest.

Step 1 Order the numbers according to their exponents.
The Tertiary period has an exponent of 7 . So, it is the youngest period.

Step 2 Order the numbers with the same exponent by comparing the factors.

Geologic Time Periods	
Period	Number of Years Ago
Jurassic	2.08×10^{8}
Silurian	4.38×10^{8}
Tertiary	6.64×10^{7}
Triassic	2.45×10^{8}

$$
\begin{array}{ccc}
4.38 & >2.45 & > \\
\text { Silurian } & \text { Triassic } & \\
\text { Jurassic } \\
\hline
\end{array}
$$

So, $4.38 \times 10^{8}>2.45 \times 10^{8}>2.08 \times 10^{8}$
The time periods ordered from oldest to youngest are Silurian, Triassic, Jurassic, and Tertiary.

Gof If? Do this problem to find out.

5. STVIT Approximately 1.372×10^{7} square kilometers of Antarctica and about 1.834×10^{6} square kilometers of Greenland are covered by an ice cap. Which land mass has a greater area covered by ice? Antarctica
6. $1.4 \times 10^{2} \mathrm{~h}$; The number is very large so choosing a larger unit of measure is more meaningful.

GuidedPractice

Express each number in standard form. (Example 1)

1. $4.16 \times 10^{3} 4160$
2. $3.2 \times 10^{-2} 0.032$
3. $1.075 \times 10^{5} 107,500$

Express each number in scientific notation. (Example 2)
4. $1,600,0001.6 \times 10^{6}$
5. $135,0001.35 \times 10^{5}$
6. 0.0088×10^{-3}

Estimate each value using scientific notation. (Example 3) 7-9. Sample answers are given.
7. $0.000007109 \mathrm{~kg} 7 \times 10^{\mathbf{- 6}} \mathbf{~ k g}$
8. $3.7085 \times 10^{14} \mathrm{~mL} 4 \times 10^{14} \mathrm{~mL}$
9. $18,900,435 \mathrm{~cm} 2 \times 10^{7} \mathrm{~cm}$
11. $3.7 \times 10^{-2} 10$. If you could walk at the rate of about 1 mile every 20 minutes without stopping, it would $3.4 \times 10^{2} \quad$ take about 1.4×10^{2} hours to walk from Columbus, Ohio, to Washington, D.C. Is it more 3.4×10^{2},
$3.5 \times 10^{2}, 400$ appropriate to report the time as 1.4×10^{2} hours or 8.4×10^{3} minutes? Explain. (Example 4)
11. Order $3.4 \times 10^{2}, 3.5 \times 10^{2}, 3.7 \times 10^{-2}$, and 400 from least to greatest. (Example 5)

