Lesson 7-3 **Adding Linear Expressions**

See pages 153-154 for:

- Getting Started
- Real-World Link
- Notes

Why are algebraic rules useful?

Content Standards 7.FF.1

Mathematical Practices 1, 2, 3, 4, 7

What You'll Learn

- Add linear expressions.
- · Find perimeter by adding linear expressions.

Real-World Link

Engineering A trebuchet is a medieval catapult that was used to hurl large stones and other projectiles at castle walls. Building a model trebuchet requires knowledge of science, math, and engineering. If done successfully, a model can launch a clay ball thirty feet or farther!

Add Linear Expressions

A **linear expression** is an algebraic expression in which the variable is raised to the first power. You can use models to add linear expressions.

Example 1

Add. Use models if needed.

a. (3x + 4) + (2x + 1)

x x	x	1 1	x	x	
3 <i>x</i>	+	4	+ 2	x	+ 1

Model each linear expression.

Combine the tiles that have the same shape.

(3x + 4) + (2x + 1) = 5x + 5

b. (-4x + 2) + (-2x + 2)

$$-4x + 2$$

- + -2x + 2Arrange like terms in columns. -6x + 4Add.
- So, (-4x + 2) + (-2x + 2) = -6x + 4.

Got If? Do these problems to find out.

- 1a. (x-3) + (x-4) 2x 7
- **1b.** (-x + 1) + (-3x) 4x + 1

Example 2

Zero Pairs

Remember that a zero pair is one positive and one negative tile of the same unit. Since 1 + (-1) = 0, you can remove zero pairs

without affecting the value of the expression.

Add (3x + 2) + (-x + 4).

Model the linear expressions.

x	x	x		1 1	- x	1 1 1 1	
	3 <i>x</i>		+	2	+(-x)+	4	

Group tiles with the same shape. Then remove any zero pairs.

Got It? Do these problems to find out.

Add. Use models if needed.

2a. (-2x+4) + (8x-4) **6***x*

2b. (-4x-1) + (5x-3) x - 4

Find Perimeter

Linear expressions can be used to find perimeter.

= 5.24(8.3) or 43.492 Replace x with 8.3 and simplify. The perimeter of the golden rectangle is 43.492 centimeters.

Got It? Do these problems to find out.

- **3.** A rectangle has side lengths of (5x 1) units and (2x + 1) units.
 - a. Write and simplify a linear expression for the perimeter of the rectangle. 14x
 - **b.** Find the perimeter of the rectangle if the value of *x* is 5.4 units. **75.6 units**

Guided Practice

Add. Use models if needed. (Examples 1 and 2)

- **1.** (x + 5) + (2x + 3) **3x + 8**
- **3.** (x+6) + (-2x-4) x + 2
- 5. Use the figure at the right. (Example 3)
 - **a.** Write and simplify a linear expression for the perimeter of the figure. 6x + 3
 - **b.** Find the perimeter of the figure if x = 4. **27 units**

2.
$$(-4x + 3) + (-5x + 2)$$
 -9x + 5
4. $(-7x + 2) + (x + 4)$ **-6x + 6**

$$(-7x+2) + (x+4) -6x+6$$

