\qquad
\qquad
\qquad

Lesson 8 - Factor Linear Expressions

A linear expression is in factored form when it is expressed as the product of its factors.

Example 1

Factor $5 x+10$.
Use the GCF to factor the linear expression.
$5 x=\binom{5}{5} \cdot x$
$10=2$$\quad$ Write the prime factorization of 5 x and 10.
The GCF of $5 x$ and 10 is 5 . Write each term as a product of the GCF and its remaining factors.

$$
\begin{aligned}
5 \boldsymbol{x}+10 & =5(x)+5(2) \\
& =5(x+2) \quad \text { Distributive Property }
\end{aligned}
$$

So, $5 x+10=5(x+2)$.

Example 2

Factor $3 x+8$.

$$
\begin{aligned}
3 \boldsymbol{x} & =3 \cdot \boldsymbol{x} \\
8 & =2 \cdot 2 \cdot 2
\end{aligned}
$$

There are no common factors, so $3 x+8$ cannot be factored.

Exercises

Factor each expression. If the expression cannot be factored, write cannot be factored.

1. $15 x+10$
2. $7 x-3$
3. $13 x+14$
4. $50 x-75$
5. $16 x-12$
6. $36 x+45$

Lesson 8 Skills Practice

Factor Linear Expressions

Factor each expression. If the expression cannot be factored, write cannot be factored.

1. $17 x+34$
2. $10 x+25$
3. $38 x-12$
4. $28 x+15$
5. $26 x-5$
6. $48 x+56$
7. $7 x+35$
8. $7 x+17$
9. $8 x+15$
10. $18 x-12$
11. The area of a rectangular sandbox is $(5 x+40)$ feet. Factor $5 x+40$ to find possible dimensions of the sandbox.
