\qquad DATE \qquad PERIOD \qquad

Lesson 8 Reteach

Solving Multi-Step Equations and Inequalities

Equations with grouping symbols can be solved by first using the Distributive Property to remove the grouping symbols.

Example 1 Solve $2(6 m-1)=8 m$. Check your solution.

$$
\begin{aligned}
2(6 m-1) & =8 m & & \text { Write the equation. } \\
12 m-2 & =8 m & & \text { Distributive Property } \\
12 m-12 m-2 & =8 m-12 m & & \text { Subtraction Property of Equality } \\
-2 & =-4 m & & \text { Simplify. } \\
\frac{-2}{-4} & =\frac{-4 m}{-4} & & \text { Division Property of Equality } \\
\frac{1}{2} & =m & & \text { Simplify. }
\end{aligned}
$$

Check $2(6 m-1)=8 m \quad$ Write the equation.

$$
\begin{aligned}
2\left[6\left(\frac{1}{2}\right)-1\right] & \stackrel{?}{=} 8\left(\frac{1}{2}\right) & & \text { Replace } m \text { with } \frac{1}{2} \\
2(3-1) & \stackrel{?}{=} 4 & & \text { Simplify. } \\
4 & =4 \checkmark & & \text { The solution checks. }
\end{aligned}
$$

Some equations have no solution. The solution set is the null or empty set, which is represented by \varnothing. Other equations have every number as a solution. Such an equation is called an identity.

Example 2 Solve each equation.
a. $2(x-1)=4+2 x$
$2 x-2=4+2 x$

$$
\text { b. } \begin{aligned}
-2(x-1) & =2-2 x \\
-2 x+2 & =2-2 x
\end{aligned}
$$

$$
2 x-2 x-2=4+2 x-2 x
$$

$$
-2=4
$$

The statement $-2=4$ is never true. The equation has no solutions and the solution set is \emptyset.

Exercises

Solve. Check your solutions.

1. $8(g-3)=24$
2. $5(x+3)=25$
3. $2(3 d+7)=5+6 d$
4. $2(s+11)=5(s+2)$
5. $7 y-1=2(y+3)-2$
6. $2(f+3)-2=8+2 f$
7. $2(x-2)+3=2 x-1$
8. $1+2(b+6)=5(b-1)$
9. $2 x-5=3(x+3)$
\qquad
\qquad

Lesson 8 Homework Practice

Solving Multi-Step Equations and Inequalities

Solve. Check your solutions.

1. $4(j-7)=12$
2. $5(2 k+10)=40$
3. $7(2 p+3)-8=14 p-13$
4. $7(g-4)=3$
5. $3(4 c+5)=24$
6. $2(a-1)=3(a+1)$
7. $3(x-3)=5(1.5+x)$
8. $2(1.5 m+3)=3.5 m-1$
9. $a-\frac{1}{2}=2 a-\frac{3}{5}$
10. $2 \frac{1}{5} x-5=2\left(1 \frac{2}{5} x+3\right)$
11. $\frac{d}{0.2}=3 d+2.1$
12. $5 n+3=2(n+2)+3 n$
13. $\frac{2}{3} a+2=\frac{1}{3}(4 a+1)$
14. $y-7=\frac{1}{4}(y+2)$

Solve. Graph each solution on a number line.

15. | $\frac{2}{3}(12-x)>4$ | |
| ---: | :--- |
| | |
| 4 | 5 |
16. $\frac{c}{3}+7>5 \frac{1}{2}$

17. $-3(x+3)>7.5$

18. $5-3 c \leq c+17$

19. $\frac{18-n}{2} \leq 6$

20. The perimeter of a rectangle is 80 feet. Find the dimensions if the length is 5 feet longer than four times the width. Then find the area of the rectangle.
21. Five times the sum of three consecutive integers is 150 . What are the integers?
22. Admission to the state fair costs $\$ 5$ and each ride costs $\$ 0.75$. If Ahmed wants to spend no more than $\$ 14$ at the fair, how many rides can he ride?
