Lesson 8 Reteach

Solving Multi-Step Equations and Inequalities

Equations with grouping symbols can be solved by first using the Distributive Property to remove the grouping symbols.

Example 1 Solve 2(6m - 1) = 8m. Check your solution.

2(6m-1) = 8m	Write the equation.	
12m - 2 = 8m	Distributive Property	
12m - 12m - 2 = 8m - 12m	Subtraction Property of Equality	
-2 = -4m	Simplify.	
$\frac{-2}{-4} = \frac{-4m}{-4}$	Division Property of Equality	
$\frac{1}{2} = m$	Simplify.	
Check $2(6m - 1) = 8m$	Write the equation.	
$2\left[6\left(\frac{1}{2}\right)-1\right] \stackrel{?}{=} 8\left(\frac{1}{2}\right)$	Replace <i>m</i> with $\frac{1}{2}$.	
$2(3-1) \stackrel{?}{=} 4$	Simplify.	
$4 = 4 \checkmark$	The solution checks.	

Some equations have no solution. The solution set is the **null** or **empty set**, which is represented by Ø. Other equations have every number as a solution. Such an equation is called an identity.

Example 2 Solve each equation.

a. $2(x-1) = 4 + 2x$	b. $-2(x-1) = 2 - 2x$
2x - 2 = 4 + 2x	-2x + 2 = 2 - 2x
2x - 2x - 2 = 4 + 2x - 2x	-2x + 2 - 2 = 2 - 2 - 2x
-2 = 4	-2x = -2x
The statement $-2 = 4$ is <i>never</i>	x = x
true. The equation has no solutions	The statement $u = u$ is always true. The equation
and the solution set is \emptyset .	is an identity and the solution set is all numbers.
Evoreicoc	·

Exercises

Solve. Check your solutions.

1. $8(g-3) = 24$	2. $5(x+3) = 25$	3. $2(3d+7) = 5 + 6d$
4. $2(s + 11) = 5(s + 2)$	5. $7y - 1 = 2(y + 3) - 2$	6. $2(f+3) - 2 = 8 + 2f$
7. $2(x-2) + 3 = 2x - 1$	8. $1 + 2(b + 6) = 5(b - 1)$	9. $2x - 5 = 3(x + 3)$

Lesson 8 Homework Practice

Solving Multi-Step Equations and Inequalities

Solve. Check your solutions.

1. 4(j - 7) = 12**2.** 5(2k + 10) = 403. 7(2p + 3) - 8 = 14p - 134. 7(g - 4) = 36. 2(a-1) = 3(a+1)5. 3(4c + 5) = 247. 3(x - 3) = 5(1.5 + x)8. 2(1.5m + 3) = 3.5m - 19. $a - \frac{1}{2} = 2a - \frac{3}{5}$ 10. $2\frac{1}{5}x - 5 = 2(1\frac{2}{5}x + 3)$ 11. $\frac{d}{0.2} = 3d + 2.1$ 12. 5n + 3 = 2(n + 2) + 3n13. $\frac{2}{3}a + 2 = \frac{1}{3}(4a + 1)$ 14. $y - 7 = \frac{1}{4}(y + 2)$

Solve. Graph each solution on a number line.

- 15. $\frac{2}{3}(12 x) > 4$ **16.** $\frac{1}{2}(8-c) < 7.5$ -9 -8 -7 -6 -5 $17.\frac{c}{3} + 7 > 5\frac{1}{2}$ **18.** 7 + 2p < -14-13 -12 -11 -10 -9 19. -3(x + 3) > 7.5**20.** $5 - 3c \le c + 17$ -8 -7 -6 -5 -4 **22.** $\frac{18-n}{2} \le 6$ **21.** $2(n-5) \le -7$ 4 5 6 7 +
- 23. The perimeter of a rectangle is 80 feet. Find the dimensions if the length is 5 feet longer than four times the width. Then find the area of the rectangle.
- 24. Five times the sum of three consecutive integers is 150. What are the integers?
- 25. Admission to the state fair costs \$5 and each ride costs \$0.75. If Ahmed wants to spend no more than \$14 at the fair, how many rides can he ride?