Test, Form 3A

What is the value of each expression?

1.
$$10(17-4)-3(8+4)$$

1. _____

2.
$$4[2(6 \cdot 4) - 8 \cdot 6]$$

2. _____

3. _____

For Exercises 4 and 5, what property can be used to prove that the statement is true?

4.
$$(9+7)+3=3+(9+7)$$

4. _____

5.
$$4 \cdot (5 \cdot 6) = (4 \cdot 5) \cdot 6$$

5. _____

$$\frac{(16+4)}{2} = \frac{1}{2}(16+4)$$

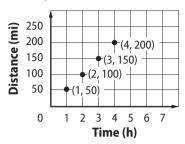
6. _____

7. Is the conjecture, *all multiples of 5 end in a zero*, true? If not, give a counterexample.

7. _____

8. The table shows the number of successful field goals made at various distances from the goal posts. What is the range of the relation?

Distance (yd)	Field Goals
20 or less	67
25	55
30	47
35	40
40	33
more than 45	20


8. _____

21

Test, Form 3A (continued)

9. The graph shows Jeremy's distance from home as it relates to his time spent driving. How many miles will he be from home after 10 hours.?

Jeremy's Distance from Home

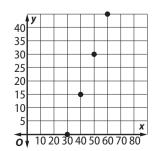
9. _____

10. If a line passes through (0, 0), (1, 3) and (2, y), what is y?

10. _____

11. Describe the graph of all possible points, (x, y) if y = 0.

11. _____


12. Rectangle ABCD has vertices A(3, 2), B(5, 2), and C(5, 5). What are the coordinates of point D?

12. _____

13. Evan had 65 baseball cards. He traded 4 cards for 3 from Alyce. He traded 9 more for 4 from Leo and 8 for 2 from Bret. Finally, he traded 15 cards for 18 from Mollie. How many cards does Evan have now? What method did you use?

13. _____

14. Can you devise a plan for finding the domain and the range of the relation shown in the graph? Explain.

14. _____